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Abstract

Nanopore sequencing is one of the most promising technologies being developed as a cheap

and fast alternative to conventional sequencing methods, especially in the sequencing of

polynucleotides in the form of DNA or RNA. Applications involved in the field of direct

contact with genotyping and point-of-care diagnostics require efficient bioinformatic

algorithms for the analysis of raw nanopore signal data.

To perform these requirements efficiently, the utilization of an optimized bioinformatics

algorithm causes a significant change in the field of nanopore sequencing. Adaptive

Banded Event Alignment(ABEA) a one such commonly used algorithm and the original

implementation of ABEA in the Nanopolish software package has already been parallelized

and optimized for GPUs(named as f5c). It performs efficiently on heterogeneous CPU-

GPU architectures.

Even though the ABEA algorithm has been fine-tuned, to exploit architectural features

in GPUs, the hardware on such generic processors cannot be modified. It will be a

tremendous achievement if customized hardware performs with the optimized ABEA

algorithm concurrently aiming for more performance improvement of the overall system.

In this project, we deploy an optimized version of the ABEA algorithm on a FPGA,

using OpenCL to achieve better performance.
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Chapter 1

Introduction

In the field of biology, it has been facing a rapid development in data from many types

of research in the same way as other scientific directions. Nowadays, vast volumes of

data are generated related to biomedical fields in sequencing centres, analytical facilities,

individual laboratories, etc. Thus, obtaining the relevant information within a certain

period of time is a challenging task that is faced by the scientific community.

Genomic medicine is a developing medical discipline that incorporates using genomic

information. In applications like clinical diagnosis, rapid species identification, and

advanced therapies, genomics plays a huge contribution to the biomedical research

field. Genomic medicine includes early diagnosis, more efficient disease prevention and

management, and the reduction of medication side-effects dependent on gene signatures.

Therefore, new methods of developing low-cost full genome DNA sequences play a huge

role in the future of genomics.

Nowadays, the focus of genome projects has moved from data production to data

analysis, and also the central challenge is how to analyze such an amount of data rapidly

and accurately. The modern sequencing methods generate data such that traditional

analysis tools are not able to cope with them. Therefore, DNA analysis algorithms have

to be implemented on hardware accelerators to achieve the expectations efficiently and

effectively.
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1.1 Background

1.1.1 Nanopore Sequencing

Nanopore sequencing is a special technique for direct, real-time analysis of long DNA

or RNA fragments. It operates by measuring changes in electrical current when nucleic

acids move through the nanopore protein. The resulting signal is decoded to produce

a particular DNA or RNA sequence. When considering the overall cost of nanopore

sequencing, in 2012 the cheapest cost is about $18k per genome including usage and

analysis costs from a high-throughput sequencing centre.

To reduce that amount of cost(i.e. instrument and usage costs), nanopores are being

pursued as next-generation sequencing (NGS) platforms. From NGS, it leads to getting

rid of the requirement of sample amplification, the use of enzymes and reagents used for

catalytic function during the sequencing operation, and optics for detection of sequencing

progress.

When considering the latest generation of sequencing technologies, which is the 3rd

generation, able to build ultra-long DNA reads of a molecule in real-time. Especially

using MinlON, i.e: a pocket-size sequencing device manufactured by Oxford Nanopore

Technologies qualified for sequencing at hospitals, clinics, etc[1].

1.1.2 Methylation Calling

Nanopore sequencing offers real-time analysis, at the expense of a higher error rate,

which is predominantly caused by the conversion of the raw signal into DNA bases via

probabilistic models and it is referred to as ‘base-calling’. To overcome base-calling errors,

the raw signal can be revisited as a posteriori.

The raw signal can be re-examined as a posteriori to resolve base-calling errors. Such

polishing could be accurate by aligning the raw signal with a biological reference sequence

for base-calling errors and thus detect raw signal idiosyncrasies by comparing observed

signal rates with predicted levels at all associated positions[2].

As mentioned earlier base calling causes essential biological information to be lost.

Some base-calling models cannot handle methylated data either because they are trained

in non-methylated sequences, or because non-canonical bases are abstracted. Such

molecules can also be wrongly marked as non-methylated bases. The methylation calling

means the process of identifying methylation[2].

Three steps are to be followed for a given read under methylation calling and steps are

performed for each reading in the data set,
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1. Event detection

2. Signal-space alignment

3. Hidden Markov Model (HMM) profiling

Event detection is the time series segmentation of the raw signal based on sudden

signal level changes. Each of these segment is called event and it is denoted by mean(µx),

standard deviation (σx) and the duration of the raw signal samples (nx). To obtain a

better match between events and the raw signal, events are aligned to a generic k-mer

model signal. Nanopolish software package accomplish this task using Adaptive Banded

Event Alignment(ABEA) algorithm. The alignment between the events and the k-mers

in a reference genome can be subjected to Hidden Markov Model (HMM) profiling to

identify if a given base is methylated or not[1].

Fig. 1.1 An Example of k-mer Model

1.1.3 Adaptive Banded Event Alignment Algorithm (ABEA)

In 2017, a heuristic algorithm Suzuki-Kasahara (SK)[3] was implemented to increase

the processing speed. SK uses an adaptive band scheme that allows a shorter band to

accommodate such kind of alignment. However, the band is no longer enough for the

whole alignment to lead to an unsatisfactory alignment. It overcomes with the use of
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an adaptive unit. Redesigned versions of the SK algorithm is used in Nanopolish for

event-space alignment and it is called ABEA.

The pseudo-code of ABEA algorithm presented in nanopolish software package is

shown in Figure 1.2. It takes the sequenced read in base-space(ref ), the output of

the event detection step(events) and the pore-model(model) as inputs and outputs the

alignment as event-ref pairs.

First, it initializes the first two bands[line 2], then the outer loop iterates through the

rest of the bands from top-left to bottom-right of the DP table and the inner loops[line

11-15] iterates through the cells inside the band. Line 4-9 corresponds to handling the

band movement on the DP table. Band movement handles form line 4-9. An alignment

score is calculated for each cell using a specific cost function with heuristic-based constants.

Finally, after all the cells on the DP table are calculated, actual alignment is found using

backtracking operation.

1.1.4 OpenCL for FPGA Architecture and Programming

During the past couple of years, GPUs have been frequently utilized in supercomputers

to accelerate various types of data processing. However, the high-power usage of these

devices remains a bottleneck in deploying large supercomputers. For this reason, Field-

Programmable Gate Arrays (FPGA) are a promising alternative to GPUs specifically

because of their relatively low power consumption.

The most common approach to achieve better performance is by assigning the compu-

tationally intensive task to hardware and exploiting the parallelism in the algorithm[4].

Field Programmable Gate Arrays (FPGAs) have proved an effective platform for the

implementation of these algorithms. FPGAs are in-between general-purpose processors

and ASICs on the spectrum of processing elements[5].

Historically, hardware developers used hardware description languages (HDL), also

known as High-level programming environments like Verilog and VHDL to program

hardware at register transfer level (RTL)[6]. When the application gets large, this ap-

proach can be complex and frustrating even with a proper structure of an implementation.

The time to design, verify, and optimize (time-to-market) an application using RTL is

significant and requires previous experience in hardware design, which implies increased

development cost.

This forced developers to come up with high-level synthesis (HLS) tools like Intel

OpenCL (Open Computing Language) HLS and Xilinx Vivado HLS[7]. These tools

provide the ability to write applications in high-level programming languages such as

C/C++ and SystemC and then generate the RTL design of the program to support
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Input:
ref[]: the base-called read (1D char array)
events[]: event table containing {µx, σx, nx} of each event—1D
{float,float,float} array
model: pore-model
Output:
alignment[]: alignment denoted by a list of {event index,k-mer index}—1D
{float,float,float} array

1: function align(ref, model, eventsq)
2: initialise first two bandspscore, trace, ll idxq

3: for i Ð 2 to n bands do
4: idir Ð suzuki kasahara rulepscoreri ´ 1sq

5: if dir ““ right then
6: ll idxris Ð move band to rightpll idxri ´ 1sq

7: else
8: ll idxris Ð move band downpll idxri ´ 1sq

9: end if
10: min j, max j Ð get limits in bandpll idxrisq
11: for j Ð min j to max j do
12: s, d Ð computepscoreri ´ 1s, scoreri ´ 2s, ref, events, modelq
13: scoreri, js Ð s
14: traceri, js Ð d
15: end for
16: end for
17: alignment Ð backtrackpscore, trace.llq
18: end function

Fig. 1.2 Adaptive Banded Event Alignment(ABEA)

hardware like FPGAs. HLS reduces the time-to-market and increases the productivity of

the developers by taking the overhead of deciding microarchitectural detail of the FPGA

design.

In[8], it has been shown that the OpenCL computing paradigm is a viable design

approach for high-performance applications on FPGAs, and it is a framework for parallel

programming and includes a language, API, libraries, and a runtime system to support

software development. OpenCL is developed to allow parallel computation to accelerate,

addressing a wide range of platforms[9]. The programs written in OpenCL can then be

converted to RTL designs to support a wide variety of platforms. An OpenCL platform

comprises one host and one or many devices, which are computed units that may consist

of multiple processing elements (PEs).
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Fig. 1.3 OpenCL Platform Model

OpenCL platform model[10], an abstract hardware model for devices (Figure 1.3).

One platform has a Host and one or more Devices connected to the host. Each Device

may have multiple compute units with multiple processing elements(PEs).

The host program performs the following tasks

• Transfer the input data from the host to the device.

• Execute the kernel.

• Transfer the output results from the device to the host.

• Release the allocated memory.

Figure 1.4 illustrates the schematic diagram of the Intel FPGA SDK for the OpenCL

programming model.

The execution model (Figure 1.5) shows the communication mechanism between

the host and devices in the context environment. The host submits work to devices

and manages the workload in the context using the OpenCL API platform layer. The

command queue is the communication media which the host query the commands such

as read, write, and execute.

OpenCL for FPGA uses two types of kernels, namely ‘Single work item’ kernels and

‘NDRange kernels’[10] (Figure 1.6). In a single work item kernel, there is only one work

item while NDRange kernel has multiple work items. The Single work item kernel shares

data among multiple loop-iterations by using a private memory while NDRange kernels

share data among multiple work-items by using local memory.

In[10], it is emphasized loop unrolling, optimizing floating-point operations, optimizing

fixed-point operations, optimizing vector operations as common optimization techniques

for both single work-item kernels and NDRange kernels.
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Fig. 1.4 Schematic diagram of the Intel FPGA SDK for OpenCL programming model

Fig. 1.5 OpenCL Execution Model

The memory hierarchy of OpenCL is shown in Figure 1.7. The host memory is

accessible only to the host. The global memory is accessible to both the host and the

device. Constant memory is read-only and only accessible to the device. Each work
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Fig. 1.6 OpenCL Kernel Programming Model

group has a local memory shared by each work item and a work item has its own private

memory.

Fig. 1.7 OpenCL Memory Model
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1.2 Problem Statement

The dynamic programming algorithm ABEA is a time-consuming step in nanopolish

software packages that come under nanopore DNA sequencing. It has been discovered

that it consumes «70% of the total CPU time in execution. Therefore, it is required to

investigate strategies to reduce the runtime of ABEA for nanopore applications. GPU

implementation does not have the capability of automatic parameter tuning at run-time.

Also, it has achieved 3-5x performance increase compared to CPU version.

1.3 Proposed Solution

We propose to address the limitations of the latest GPU version of ABEA. Using FPGA

based implementation, we hope to achieve better performance and power utilization.

Using OpenCL, we develop a portable version of the algorithm which can deploy in

FPGAs, GPUs, CPUs and other processors and accelerators.



Chapter 2

Related Work

2.1 GPU Accelerated Adaptive Banded Event Alignment

Algorithm

Previous research[1], which is done under the objective of accelerating ABEA, deployed

an accelerated version of the algorithm on GPUs using CUDA. In this work, high read

length variability was one of the key problems that were solved by a variety of memory

optimizations and a heterogeneous computing approach that uses both CPU and GPU.

They have achieved 3-5x performance improvement on the CPU-GPU system when

compared to the original CPU version of the nanopolish software package. As of now The

complete methylation calling of a human genome can be performed in real-time while

the nanopore sequencer is operating on an embedded system such as in an SoC equipped

with an ARM processor and an NVIDIA GPU. They have re-engineered the original

Nanopolish methylation detection tool to efficiently utilize existing CPU resources, which

they have referred to as f5c. According to its results, f5c powered by GPU accelerated

ABEA can process the output from the rest of the pipeline on a single NVIDIA TX2

SoC, at a speed of (>600 Kbases per second) to keep up with the sequencing output as

shown in Figure 2.1.

Also they have shown that, if the original Nanopolish was executed on the NVIDIA

TX2 SoC, the processing speed is limited to «256 Kbases per second. Their work will

not only reduce the associated costs of Nanopore data processing and data transfer but

will also improve the turnaround time of the final test outcome.
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Fig. 2.1 Human Genome Processing on-the-fly

2.2 Algorithms Accelerated on FPGAs

2.2.1 Smith-Waterman Algorithm Acceleration Using OpenCL

Smith-Waterman (SW)[11] algorithm is a widely used pairwise sequence alignment algo-

rithm that finds the best possible aligned sub-segment in a pair of sequences. Accelerating

SW is a great challenge in the field of high-performance computation.

In[12], Rucci et al. have presented SW implementation which is capable of aligning

DNA sequences of unrestricted size for Altera Stratix V using OpenCL. In this work, the

kernel is implemented using the task parallel programming model. The alignment matrix

is divided into vertical blocks. In a row-by-row manner, each block is computed from top

to bottom and left to right. This approach supported by OpenCL has improved the data

locality and has reduced the memory requirement for block execution. They showed that

using smaller data types for kernel implementation has increased the performance as well

as it has reduced resource consumption.

In[13], by Rucci et al. SW kernel has exploited inter-task parallelism. Here, they

have utilized SIMD (Single Instruction Multiple Data) vector capability available in the

FPGA. Therefore, instead of using one sequence at a time, multiple sequences are aligned

at a time. It is emphasized that the allocation of 64-byte host side buffers has improved

the data transfer efficiency because Direct Memory Access (DMA) takes place to and

from the FPGA.

In[14], Sirasao et al. have presented FPGA and OpenCLbased acceleration to the

SW algorithm. They have benchmarked performance per watt on different hardware

platforms including CPUs, GPUs, and FPGAs. Also, it presents a performance tradeoff

using OpenCL based programming environment.
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2.2.2 High-Performance Stencil Computation using OpenCL

Stencil computations are one of the most important types of algorithms in High-

Performance Computing (HPC) that are widely used applications in the fields of weather,

wave, seismic, and fluid simulations, image processing, and convolutional neural networks.

In 2017, Waidyasooriya et al. propose an FPGA platform using OpenCL for stencil

computations[15] using iteration-parallel computation where multiple iterations are

processed in parallel. With that, they propose an optimization methodology to find the

optimal architecture for a given application[15]. They have achieved higher processing

speed relative to multicore CPU and GPU implementations and more than 60% of the

peak performance given by FPGA.

In[16], Wang et al. proposed a new heterogeneous architecture design for stencil com-

putations to improve performance with saved FPGA resources. Further, they developed

a performance model to determine optimal stencil accelerator design parameters and

proposed a framework to automatically optimize, synthesize stencil computations onto

FPGAs. They achieved a 1.65X performance increment compared to state-of-the-art

with fewer hardware resources.

In[17], Jia et al. have Optimized 1D convolution, 2D convolution, and 2D Jacobi

iteration kernels for both Single-Task and NDRange modes. They were able to gain 7.1X

and 3.5X speedup factor for the Sobel and Time-domain FIR filters than Altera design

examples.

2.2.3 K-Nearest Neighbor Algorithm (KNN) using OpenCL

K-Nearest Neighbor Algorithm(KNN) is one of the most popular machine learning

algorithms[18] and due to high computational complexity for large datasets, it has

become popular in the field of high-performance computing.

In[19], Pu et al. have proposed a new solution to speed up the KNN algorithm on

FPGA based heterogeneous computing systems with OpenCL. They have introduced a

specific bubble sorting algorithm based on FPGA’s parallel pipeline structure to optimize

the KNN algorithm. The GPU accelerated our KNN algorithm by 410 times the speed of

the 4-threads CPU implementation, while FPGA achieved 148 times. When comparing

the power consumption CPU implementation could merely classify 0.015 query objects

per Joule and GPU achieved 4.024, while FPGA 12.056. The energy-efficient ratio (EER)

in FPGA is 3 times better than the GPU.

Two different implementations of the energy-efficient approach for the KNN algorithm

is presented[20] by Muslim et al. Furthermore, they have compared the performance
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between GPU and FPGA implementations of the same algorithm. In the first approach,

both sorting and nearest neighbor identification are performed by the host. It uses

only global memory and because the independent data usage algorithm is extremely

parallelizable.

In the second approach, they have implemented two kernels to calculate distances

and to find k-smallest distances and return their indices at the end of execution. In this

approach FPGA implementation is the fastest and still, it consumes lesser power and

energy. It has performed 7-times faster than the first approach.

2.2.4 Convolutional Neural Networks (CNN) using OpenCL

It is challenging to apply CNNs for real-time applications with the requirement of low

power consumption. Recent studies on accelerating CNNs on FPGAs especially with

high-level synthesis have shown the advantage of reconfigurability and energy efficiency

and fast turn-around-time over GPUs.

In[21], Suda et al. proposed a systematic design space exploration methodology to

maximize the throughput of an OpenCL based FPGA accelerator for a given on-chip

memory, registers, computational resources, and external memory bandwidth. They

implemented a CNN with fixed-point operations on FPGA using OpenCL and identified

critical design variables that affect the throughput and execution times were modeled and

validated as a function of those variables. They proposed and demonstrated a systematic

way to minimize the total execution time of large scale CNNs: AlexNet[22] and VGG on

FPGAs.

In[23], Zhang et al. propose an analytical performance model to perform in-depth,

quantitative analysis on resource requirements and performance of CNN classifier kernels

and available resources on modern FPGAs. Further, they propose a new kernel design to

address the key performance bottleneck of chip memory bandwidth that was identified

by applying the model to analyze VGG CNN to optimally balance between computa-

tion, on-chip and off-chip memory access. They have verified the effectiveness of the

proposed model and were able to achieve the highest performance, energy efficiency, and

performance density relative to state-of-art OpenCL FPGA CNN implementations.

In[24], Wang et al introduced and demonstrated PipeCNN which is an efficient FPGA

accelerator that is open for researchers to be implemented on a variety of FPGA platforms

with reconfigurable performance and cost. It includes a set of OpenCL kernels (namely

Convolutional kernel, Data mover kernel, and other kernels) integrated using Altera’s

OpenCL extension channels. Throughput optimization is done by data vectorization

and parallelization of CUs. Optimizations of bandwidth are achieved by introducing



Chapter(2) : Related Work 14

a sliding-window data buffering scheme and fixed-point arithmetic is used instead of

floating-point to reduce memory bandwidth requirements and hardware costs.

2.2.5 Molecular Dynamics Applications using OpenCL

Molecular dynamic (MD) is the area of computer simulations to analyze the physical

behavior of atoms and molecules in space. The simulation is driven by the numerical

results given by relatively applying classical Newtonian dynamic equations to atoms or

molecules.

In[25], they propose an OpenCL based heterogeneous computing system with an FPGA

accelerator. They have implemented the most time consuming non-bonded interaction

computations using the FPGA accelerator. Since the atoms move with time, the number

of atoms in a cell is not a constant making the loop boundaries data-dependent and

not suitable for OpenCL implementation. To get around this issue, they introduced a

pipelined architecture replacing nested loops.

In[26], they tried to experiment and determine whether the OpenCL implementation

is competitive with an HDL implementation of MD using several designs with pipelines:

single-level implementations in Verilog and OpenCL, a two-level Verilog implementation

with the optimized arbiter, and several two-level OpenCL implementations with different

arbitration and hand-shaking mechanisms including one with an embedded Verilog

module.

2.2.6 Takeaways from Related Work

Following are the key points in terms of optimizing FPGA based accelerations using

OpenCL.

• Larger pipelines lead to better performance but at the cost of higher resource

consumption.

• The use of smaller data types for kernel code results in better performance and less

resource consumption on FPGAs.

• Data level parallelism is important to achieve successful performance rates at the

expense of a moderate increase in resource usage.

• When considering DNA sequencing algorithms, larger workloads benefit all kernels

regardless of sequence similarity.
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• When considering power efficiency, most of the FPGA accelerators are better than

GPU based implementations.

• The exploitation of OpenCL memory hierarchy, such as the private memory of-

fers considerable benefits, although constant memory usage hardly improves the

performance.

• Data transfer time between CPU and FPGA is a performance bottleneck. This

can be eliminated using unified memory space for CPU and FPGA.

• Since OpenCL allows multiple devices exploitation, the workload can be distributed

among multiple FPGAs to achieve better performance.

• Unlike the existing HDL-based alternatives, OpenCL paradigm facilitates portabil-

ity.



Chapter 3

Design and Implementation

In the first phase of our project, we have followed the procedure described in[1]. The

ultimate goal of both of these approaches is to optimize the ABEA algorithm. Following,

we describe the methodologies we used based on[1]. In the next phase, we fine-tune the

implementation based on FPGA specific optimization techniques.

In this system, the application starts out executing on the CPU, and then the CPU

launches kernels on FPGA. The data transferred between host and the device is done

using the PCIe bus to minimize the impact of communication.

3.1 Optimization Techniques

The original CPU implementation processes a read at a time. But, in OpenCL imple-

mentation, a batch of reads is processed at a time to optimize the performance by data

transfer overhead between the host main memory and device memory and by allowing

the maximum usage of device resources for parallelization.

3.1.1 Decomposition of the Algorithm into Multiple Kernels

All-in-one kernels tend to use a large number of registers. But, typical OpenCL devices

only have a finite number of register file sizes. Therefore, fewer concurrent warps, large

kernels often result in poor overall performance compared to multiple kernels. The GPU

implementation of Adaptive Banded Event Alignment (ABEA) algorithm[1] consists of

three kernels since multiple kernels allow efficient thread assignments.

• Pre kernel: Initialising the first two bands of the dynamic programming table and

pre-computing frequently accessed values by the next kernel.
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• Core kernel: The filling of the dynamic programming table which is the compute

intensive portion of the ABEA algorithm.

• Post kernel: Performs backtracking.

3.1.2 Memory Optimization Techniques

Dynamic memory allocation performed inside kernels are extraordinarily expensive[1].

Therefore dynamic allocation of memory per millions of reads is an extreme overhead

and leads to poor performance. In this implementation, a different methodology is used

to reduce the number of memory allocations by pre-allocating large chunks of contiguous

memory at the beginning of the program to accommodate a batch of reads, and then

they are reused throughout the program.

3.2 Implementation

The isolated alignment algorithm is implemented in OpenCL and tested by comparing

the output with dumped input and corresponding output of CPU implementation of the

algorithm.

The process flow of the testbed is illustrated in Figure 3.1.

Fig. 3.1 Process Flow of the Testbed
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3.2.1 Experimental Setup

Platform Information (Host)

The host is a low-end personal computer with hardware specifications in Table 3.1. It

acts as both the host and the FPGA emulator device.

CL PLATFORM NAME Intel(R) FPGA SDK for OpenCL(TM)
CL PLATFORM VERSION OpenCL 1.0 Intel(R) FPGA SDK for OpenCL(TM), Version 18.0
CPU Intel Core i5-4200H 2.80GHz x 2
RAM(GB) 12

Table 3.1 Host Specifications

Device Information (Emulator)

Intel FPGA emulation platform (Specifications shown in Table 3.2) for OpenCL is used

to assess the functionality of kernels. It is capable of providing rapid compilation time,

source code portability between FPGA emulator and physical FPGA hardware. It also

give reasonable performance with an average benchmark run at 5x to 10x slowdown in

comparison to physical FPGA hardware.

CL DEVICE NAME EmulatorDevice : Emulated Device
CL DEVICE VERSION OpenCL 1.0 Intel(R) FPGA SDK for OpenCL(TM), Version 18.0
CL DEVICE ADDRESS BITS 64
CL DEVICE GLOBAL MEM SIZE 12473344000B
CL DEVICE MAX CLOCK FREQUENCY 1000MHz
CL DEVICE MAX COMPUTE UNITS 1
CL DEVICE MAX CONSTANT ARGS 8
CL DEVICE MAX WORK ITEM DIMENSIONS 3

Table 3.2 Emulator Specifications

3.2.2 Dataset

The dataset we use for experiments on OpenCL implementation of ABEA algorithm

is a subset of publicly available reads that aligned to a 2kb region in the E. coli draft

assembly (Table 3.3). Statistical information of the testset is in Table 3.4.
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Sample E. coli str. K-12 substr. MG1655
Instrument MinION sequencing R9.4 chemistry
Basecaller Albacore v2.0.1
Region ”tig00000001:200000-202000”
Note Ligation-mediated PCR amplification performed

Table 3.3 Details of the Dataset

Dataset Number of reads Number of bases Mean read
length (Bases)

Max read length
(Bases)

testset 143 819102 5727 12618

Table 3.4 Statistical Information of the Dataset



Chapter 4

Results and Analysis

4.1 Results

Execution time for each kernel are measured using gettimeofday function from sys/time.h.

Kernel Execution time(s) Percentage
Pre-kernel 0.125 0.008%
Core-kernel 1501.740 99.922%
Post-kernel 1.045 0.070%

Table 4.1 Kernel Execution Times for Testset on OpenCL for DE5net FPGA Emulator

Implementation Total execution time(s)
FPGA implementation on DE5net FPGA Emulator 1503.126
CPU implementation on Host PC 6.187

Table 4.2 Execution times of CPU and FPGA Emulator implementations

Table 4.3 shows the number of reads that gives the expected alignment pairs as

“Passed” and reads that fail to produce the expected alignment pairs as “Failed”.

Reads Percentage
Passed 109 76.22%
Failed 34 23.77%

Table 4.3 Results Validation of OpenCL Implementation with CPU Implementation



Chapter(4) : Results and Analysis 21

4.2 Analysis

The execution times of each kernel in the OpenCL implementation of the algorithm

after running on the Intel FPGA emulator are given in Table 4.1. As we anticipated the

Core-kernel takes the longest time of around 99.9% of the total execution time since it is

compute intensive.

As shown in Table 3.2, the Intel FPGA emulator has limited resources such as

1GHz maximum clock frequency and one CU compared to a physical FPGA hardware.

Eventhough the device global memory size is listed as around 12GB (the total main

memory of the host PC), it is only an upper boundary since the PC performs as both

the Host and the Emulator Device.

Those limitations of the Intel FPGA emulator justify the significant difference in total

execution times of OpenCL on FPGA implementation and original CPU implementation

of the algorithm shown in Table 4.2. It is around 240x of slowdown relative the CPU

implementation.
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Conclusion and Future Work

The Adaptive Banded Event Alignment algorithm is an improved version of DNA

sequencing which is extensively used in nanopore DNA sequencing. The most recent

work that has been done by the previous work is that it has parallelized this algorithm

and it can efficiently run GPUs and it has achieved 3-5× performance improvement on

the CPU GPU system when compared to CPU.

During the past 10 weeks, we have been able to extract necessary functions (the

alignment function) from the original work and convert it into OpenCL such that it

works successfully with the FPGA Emulator.

In the next phase, we take this implementation to run on an Altera Stratix V

FPGA and try to experimentally identify and adapt FPGA optimization techniques

to achieve better performance. Finally, we propose to compare the performance of our

implementation with the related work done so far.
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